Quantum Iterative Deepening with an Application to the Halting Problem
نویسندگان
چکیده
Classical models of computation traditionally resort to halting schemes in order to enquire about the state of a computation. In such schemes, a computational process is responsible for signaling an end of a calculation by setting a halt bit, which needs to be systematically checked by an observer. The capacity of quantum computational models to operate on a superposition of states requires an alternative approach. From a quantum perspective, any measurement of an equivalent halt qubit would have the potential to inherently interfere with the computation by provoking a random collapse amongst the states. This issue is exacerbated by undecidable problems such as the Entscheidungsproblem which require universal computational models, e.g. the classical Turing machine, to be able to proceed indefinitely. In this work we present an alternative view of quantum computation based on production system theory in conjunction with Grover's amplitude amplification scheme that allows for (1) a detection of halt states without interfering with the final result of a computation; (2) the possibility of non-terminating computation and (3) an inherent speedup to occur during computations susceptible of parallelization. We discuss how such a strategy can be employed in order to simulate classical Turing machines.
منابع مشابه
An Iterative Decision Rule to minimize cost of Acceptance Sampling Plan in Machine Replacement Problem
In this paper, we presented an optimal iterative decision rule for minimizing total cost in designing a sampling plan for machine replacement problem using the approach of dynamic programming and Bayesian inferences. Cost of replacing the machine and cost of defectives produced by machine has been considered in model. Concept of control threshold policy has been applied for decision making. If ...
متن کاملSome improvements in fuzzy turing machines
In this paper, we improve some previous definitions of fuzzy-type Turing machines to obtain degrees of accepting and rejecting in a computational manner. We apply a BFS-based search method and some level’s upper bounds to propose a computational process in calculating degrees of accepting and rejecting. Next, we introduce the class of Extended Fuzzy Turing Machines equipped with indeterminacy s...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملNetwork Planning Using Iterative Improvement Methods and Heuristic Techniques
The problem of minimum-cost expansion of power transmission network is formulated as a genetic algorithm with the cost of new lines and security constraints and Kirchhoff’s Law at each bus bar included. A genetic algorithm (GA) is a search or optimization algorithm based on the mechanics of natural selection and genetics. An applied example is presented. The results from a set of tests carried ...
متن کاملAPPLICATION OF THE SINGULAR BOUNDARY VALUE PROBLEM FOR INVESTIGATION OF PISTON DYNAMICS UNDER POLYTROPIC EXPANSION PROCESS
In this paper a mathematical simulation of a simplified internal combustion engine is presented. To contribute engine kinematics and its geometry, simple relations are derived for constrained motions. The equation of motion for the piston forms a singular boundary value problem. The uniqueness of the solution was studied in the Banach space. For solving governing equations an iterative numerica...
متن کامل